Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

## Barium tetraphosphate

Jamal Bennazha, ${ }^{\text {a,b }}$ Ali Boukhari ${ }^{\text {b }}$ and Elizabeth M. Holt ${ }^{\text {c* }}$

${ }^{\text {a }}$ Département de Chimie, Faculté des Sciences et Techniques, Université Hassan-II, Mohammedia, Morocco, ${ }^{\text {b }}$ Laboratoire de Chimie du Solide Appliquée, Laboratoire Associé Francophone, Département de Chimie, Faculté des Sciences, Université Mohammed-V, Avenue Ibn-Batouta, Rabat, Morocco, and ${ }^{\text {c }}$ Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, USA Correspondence e-mail: betsy@biochem.okstate.edu

Received 3 October 2001
Accepted 17 December 2001
Online 13 February 2002
The structure of the low-temperature form of barium tetraphosphate, $\mathrm{Ba}_{3} \mathrm{P}_{4} \mathrm{O}_{13}$, shows the tetraphosphate to exist in an $S$ conformation.

## Comment

In 1986, Millet et al. (1986) reported unit-cell dimensions for low- and high-temperature forms of $\mathrm{Ba}_{3} \mathrm{P}_{4} \mathrm{O}_{13}$. The lowtemperature form (triclinic space group $P 1$ or $P \overline{1} ; a=5.757, b=$ 7.243, $c=8.104 \AA, \alpha=82.75, \beta=73.94, \gamma=70.71^{\circ}$ ) transforms at 1143 K into the high-temperature form (orthorhombic space group Pbcm; $a=7.107, b=13.883, c=19.219 \AA$ ) (cell dimensions from precession camera data).

Gatehouse et al. (1991) later reported the crystal structure of the low-temperature form in the triclinic space group $P \overline{1}[a=$ 5.691 (5), $b=7.238$ (7), $c=8.006$ (5) $\AA, \alpha=83.65$ (5), $\beta=$ 75.95 (8), $\left.\gamma=70.49(7)^{\circ}\right]$. The asymmetric unit consisted of two Ba atoms and a linear tetraphosphate group $\left(\mathrm{P}_{4} \mathrm{O}_{13}\right)$ chain, with one Ba atom and the central O atom of the $\mathrm{P}_{4} \mathrm{O}_{13}$ chain existing on a center of symmetry. Disorder of the central bridging O atom and of the two terminal O atoms on adjacent P atoms led to an incomplete refinement. Only the Ba atoms were refined anisotropically, while the P and O atoms were refined with isotropic displacement parameters.

We have isolated crystals of the low-temperature form of $\mathrm{Ba}_{3} \mathrm{P}_{4} \mathrm{O}_{13}$ and refined single-crystal data in a triclinic cell of doubled volume $[600.65$ (12) $\AA$ A $]$. We find the disorder evident in the $\mathrm{P}_{4} \mathrm{O}_{13}$ group seen in the triclinic cell of volume $301 \AA$ to be completely absent in our refinement. Moreover, the central bridging O atom shows a normal $\mathrm{P}-\mathrm{O}-\mathrm{P}$ angle of 151.4 (4) Å.

The $\mathrm{P}_{4} \mathrm{O}_{13}$ group has an $S$ conformation (Fig. 1), as is common (Averbuch-Pouchot, 1987; Averbuch-Pouchot \& Durif, 1987), and not a $U$ conformation (Lii et al., 1989). The $\mathrm{P} \ldots \mathrm{P} \ldots \mathrm{P} \ldots \mathrm{P}$ torsion angle is $179.1(5)^{\circ}$, which is consistent with this assignment. The four P atoms are coplanar (r.m.s. deviation $=0.012$ ). The relative O -atom conformations are pseudo-eclipsed about the P1‥P2 direction, pseudo-stag-
gered about the $\mathrm{P} 2 \cdots \mathrm{P} 3$ direction and pseudo-eclipsed about the P3..P 4 line. Average $\mathrm{O}-\mathrm{P} \cdots \mathrm{P}-\mathrm{O}$ torsion angles about the three $\mathrm{P} \cdots \mathrm{P}$ directions are $9.8,56.1$ and $30.6^{\circ}$, respectively, further evidence of the need to refine the O atoms of the $\mathrm{P}_{4} \mathrm{O}_{13}$ group without constrained symmetry. The angles at the bridging O atoms are 128.6 (3), 151.4 (4) and 130.0 (3) ${ }^{\circ}$.


Figure 1
A view of the $\mathrm{P}_{4} \mathrm{O}_{13}$ group of the title compound. Displacement ellipsoids are shown at the $50 \%$ probability level.


Figure 2
Projection of $\mathrm{Ba}_{3} \mathrm{P}_{4} \mathrm{O}_{13}$ on to the 011 plane.
The four Ba atoms appear related by the pseudosymmetry element $\left(\frac{1}{2}+x, y, \frac{1}{2}+z\right)$. Atoms Ba 1 and Ba 2 exist on a center of symmetry and are eight-coordinate, with $\mathrm{Ba}-\mathrm{O}$ distances in the range 2.659 (4)-3.113 (5) $\AA$ for Ba 1 and 2.719 (4)2.938 (4) $\AA$ for Ba 2 (Table 1). Atom Ba 3 is seven-coordinate [ $\mathrm{Ba}-\mathrm{O} 2.662$ (4)-2.891 (4) A.], while atom Ba 4 has eight O atom neighbors within the distance range 2.680 (4)3.194 (4) A.

Ba atoms are seen in two tunnels extending in the [100] direction. These tunnels differ in their placement in the curves of the $\mathrm{P}_{4} \mathrm{O}_{13}$ groups ( Ba 3 and Ba 4 ) or at the ends of such groups ( Ba 1 and Ba 2 ) (Fig. 2).

## Experimental

Crystals of $\mathrm{Ba}_{3} \mathrm{P}_{4} \mathrm{O}_{13}$ were obtained from a mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}$, $\mathrm{BaCO}_{3}$ and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ (proportion 2:1:2), which was ground in an agate morter and then heated in a porcelain crucible from 373 to 873 K . A quantity of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ equal to $10 \%$ of the final mass was added to the top of the crucible and the material then heated to fusion ( 1173 K ). Colorless crystals were found in the product after controlled cooling $\left(6 \mathrm{~K} \mathrm{~h}^{-1}\right)$ to 673 K .

## inorganic compounds

## Crystal data

$\mathrm{Ba}_{3} \mathrm{P}_{4} \mathrm{O}_{13}$
$M_{r}=743.90$
Triclinic, $P \overline{1}$
$a=7.557$ (1) A
$b=8.618$ (1) $\AA$
$c=10.582$ (1) A
$\alpha=108.26(1)^{\circ}$
$\beta=104.50(1)^{\circ}$
$\gamma=102.37(1)^{\circ}$
$V=600.65(12) \AA^{3}$

## Data collection

Syntex $P 4$ four-circle diffractometer $\theta / 2 \theta$ scans
Absorption correction: $\psi$ scan
(XEMP; Siemens, 1990)
$T_{\text {min }}=0.72, T_{\text {max }}=0.78$
4118 measured reflections
3397 independent reflections
2777 reflections with $I>2 \sigma(I)$

## Refinement

Refinement on $F^{2}$
$R(F)=0.032$
$w R\left(F^{2}\right)=0.099$
$S=0.90$
3397 reflections
185 parameters

$$
\begin{aligned}
& Z=2 \\
& D_{x}=4.113 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 23 \\
& \quad \text { reflections } \\
& \theta=6.2-12.8^{\circ} \\
& \mu=10.33 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Plate, colorless } \\
& 0.15 \times 0.15 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

$$
R_{\mathrm{int}}=0.022
$$

$$
\theta_{\max }=30.0^{\circ}
$$

$$
h=-10 \rightarrow 1
$$

$$
k=-11 \rightarrow 11
$$

$$
l=-14 \rightarrow 14
$$

3 standard reflections every 97 reflections intensity decay: none

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0592 P)^{2}\right. \\
& +5.8638 P \text { ] } \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\max }=0.03 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-0.08 \text { e } \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0173 \text { (7) }
\end{aligned}
$$

Table 1
Selected interatomic distances ( $\AA$ ).

| Ba1-O33 ${ }^{\text {i }}$ | 2.659 (4) | $\mathrm{Ba} 3-\mathrm{O} 33^{\text {vi }}$ | 2.891 (4) |
| :---: | :---: | :---: | :---: |
| $\mathrm{Ba} 1-\mathrm{O} 13{ }^{\text {i }}$ | 2.699 (4) | Ba3-O11 ${ }^{\text {i }}$ | 3.268 (5) |
| Ba1-O41 | 2.742 (4) | $\mathrm{Ba} 3-\mathrm{Ba} 2^{\text {vii }}$ | 4.4559 (6) |
| $\mathrm{Ba} 1-\mathrm{O} 12{ }^{\text {i }}$ | 3.113 (5) | $\mathrm{Ba} 4-\mathrm{O} 23^{\text {viii }}$ | 2.680 (4) |
| $\mathrm{Ba} 1-\mathrm{O} 43$ | 3.325 (4) | $\mathrm{Ba} 4-\mathrm{O} 41^{\text {iv }}$ | 2.682 (4) |
| $\mathrm{Ba} 2-\mathrm{O} 42^{\text {ii }}$ | 2.719 (4) | $\mathrm{Ba} 4-\mathrm{O} 12{ }^{\text {vi }}$ | 2.700 (4) |
| $\mathrm{Ba} 2-\mathrm{O} 22^{\text {ii }}$ | 2.740 (4) | $\mathrm{Ba} 4-\mathrm{O} 32^{\text {vi }}$ | 2.739 (4) |
| Ba2-O11 ${ }^{\text {iii }}$ | 2.772 (4) | Ba4-O13 ${ }^{\text {viii }}$ | 2.777 (4) |
| $\mathrm{Ba} 2-\mathrm{O} 43^{\text {ii }}$ | 2.938 (4) | $\mathrm{Ba} 4-\mathrm{O} 22^{\text {ii }}$ | 2.799 (4) |
| $\mathrm{Ba} 3-\mathrm{O} 32^{\text {iv }}$ | 2.662 (4) | $\mathrm{Ba} 4-\mathrm{O} 42^{\text {ix }}$ | 2.876 (4) |
| Ba3-O11 ${ }^{\text {v }}$ | 2.671 (4) | $\mathrm{Ba} 4-\mathrm{O} 41^{\text {ix }}$ | 3.194 (4) |
| Ba3-O43 | 2.674 (4) | $\mathrm{Ba} 4-\mathrm{P} 4^{\text {ix }}$ | 3.5171 (14) |
| Ba3-O23 | 2.771 (5) | $\mathrm{Ba} 4-\mathrm{P}^{\text {vi }}$ | 3.6111 (14) |
| Ba3-O42 ${ }^{\text {iv }}$ | 2.779 (4) | $\mathrm{Ba} 4-\mathrm{Ba} 1^{\text {iv }}$ | 4.3980 (6) |
| $\mathrm{Ba} 3-\mathrm{O} 13^{\text {i }}$ | 2.890 (4) |  |  |

Symmetry codes: (i) $x, 1+y, z$; (ii) $x-1, y, z-1$; (iii) $x-1,1+y, z-1$; (iv) $x-1, y, z$; (v) $1-x,-1-y, 1-z$; (vi) $1-x,-1-y,-z$; (vii) $x, y, 1+z$; (viii) $-x,-1-y,-z$; (ix) $1-x,-y,-z$.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OS1147). Services for accessing these data are described at the back of the journal.

## References

Averbuch-Pouchot, M. T. (1987). Z. Anorg. Allg. Chem. 545, 118-124.
Averbuch-Pouchot, M. T. \& Durif, A. (1987). Acta Cryst. C43, 631-632.
Gatehouse, B. M., Platts, S. N. \& Roth, R. S. (1991). Acta Cryst. C47, 22852287.

Lii, K. H., Chen, Y. B., Su, C. C. \& Wang, S. L. (1989). J. Solid State Chem. 82, 156-160.
Millet, J. M., Parker, H. S. \& Roth, R. S. (1986). J. Am. Ceram. Soc. 69, C103105.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1990). XP. Version 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1991). XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

